“講真,固態電池這條路真不好走。” 一個殘酷事實就是,當前無論是從最基礎的材料到反應界面,再到電池的理論研究和實驗,以及更遠處的規模產業

“講真,固態電池這條路真不好走。”

一個殘酷事實就是,當前無論是從最基礎的材料到反應界面,再到電池的理論研究和實驗,以及更遠處的規模產業化以應用,都還沒有從根本上解決一些基礎難題。

固態電池的研究始于上個世紀八十年代,相關技術從不成熟走向成熟,從實驗室走向工廠,從工廠走向終端設備實現規模化應用和普及,動輒十幾年甚至幾十年已經過去了,注定這條路是漫長而艱苦的。

歷史上,在實驗室中開發出的很大比例的新技術,真正成功實現工業化的只屬于少數。

一項新技術從實驗走向應用,首先要在實驗室中搞清楚其基本機理,繼而確定可以用來放大工業化的技術路線,最后經過中試穩定過后實現規模量產。而大多數時候,一項新技術得以工業化的最基本前提就是“簡單粗暴”,只有這樣才能“易于理解”,只有易于理解才能最終落實給生產線上的作業人員,以標準化的工序放大生產。同時在生產過程中積累經驗教訓,在每一個環節中精益求精地改進,每一個細節都實現可控化,最終大規模生產出足夠一致性和穩定性的產品。

而這期間,上游產業鏈如原材料、生產設備的配合更是必不可少。

這樣看來,固態電池還處于第一個階段,即還處于在實驗室中進行最基本的機理研究,解決一些基本問題的階段。

固態電池要想成功實現產業化,甚至作為動力電池被大規模應用上車,至少需要翻越四座大山,而這幾座大山以目前技術水平來看,跨過的難度都是極大的。

第一座大山就是要不要用金屬鋰作為負極?

這個答案幾乎是毋庸置疑的。因為如果不用金屬鋰負極的話,那么固態電池的實現將沒有任何意義。根據中國科學院物理研究所李泓老師的研究,如果使用現有的正負極材料,由于固態電解質的真實密度顯著高于液態電解質,為了獲得較低的接觸電阻,固態電解質體積占比一般會顯著高于液態電解質電池,因此固態電池的能量密度必然低于液態電解質電池,而不是如新聞中宣稱的會數倍于鋰離子電池。

這說明如果不改變現有正負極體系,不用鋰金屬作為負極,只是單純把液態電解質更換為固態電解質,是無法從根本上提升固態電池的能量密度的。因為固態電解質的使用,在提升能量密度上來說不僅相對于現有的三元正極+液態電解質+硅碳負極改變不大,甚至還拖了后腿。

負極如果使用了金屬鋰,不僅因為能夠提供更多的鋰離子而大幅提升整個電芯的能量密度,還能有效解決液態電解質中存在的鋰枝晶穿刺隔膜,高溫下與液態電解質發生持續副反應、鋰的生長和析出導致的界面結構不穩定等問題。

所以說,采用鋰金屬作為負極材料是勢在必行。那么你以為就是單純的采用這么簡單了?

用一個業內朋友的話講,制造金屬鋰負極材料的工藝要求,高到變態。因為需要類比芯片制造的超凈車間,所以需要全程在手套箱中進行。現實在實驗室中,加工一小片試驗用的鋰金屬片,往往一個研究人員在手套箱中操作即可,但你能想象一旦要實現規模化生產,在一個類似手套箱的車間中,幾十米長的鋰金屬片像現在涂在銅箔上的石墨那樣運行嗎?

除了高到難以想象的大規模制造難度以外,更大的問題還在于制作過程的安全性。這一點,我們拿當前各大電池廠都在重點發展的補鋰工藝作為參照說明一下問題。

為了補充鋰電池負極在首次充電過程中不可逆的容量損失(鋰離子數量變少),電池廠希望通過補鋰設備直接向負極極片噴涂金屬鋰粉或鋰箔的方式進行補鋰,以此達到提升首次庫倫效率和電池容量的目的。

聽著很簡單,實際操作起來卻極難。作為補鋰原料的金屬鋰是高反應活性的堿金屬,屬于非常危險的物品,鬧不好就會著火和爆炸。而從補鋰方式說,撒鋰粉面臨的問題是鋰粉比表面積很大,容易飄,有被人體吸入的風險;壓鋰帶的難題是又壓不了那么薄,會導致補鋰過量,長期使用存在安全隱患。

除了生產和使用過程危險,補鋰設備采購費用高以外,由于金屬鋰能夠與水劇烈反應,所以對生產環境要求相當之苛刻,這就需要對生產車間和生產線進行改造。所以當前,沒有足夠經濟實力和技術能力的電池廠輕易不敢碰補鋰工藝。

有朋友向燕十七透露過一個消息,即便是寧德時代,依然曾經在嘗試補鋰的小試中出了事故。

說了這么多,只是想說明一個道理:對于直接采用金屬鋰作為負極的方式來說,補鋰工藝只能算是一個小case,只能算是金屬鋰負極材料的工藝技術和生產實踐的折中方案和必經步驟而已,真正要規模制造和使用鋰金屬負極材料,難度要比補鋰大太多太多。

這里插播一條小故事,實際上早在上個世紀60年代,國外就已經開始金屬鋰作為負極材料的研究。80年代,美國一家鋰電池新星EoneMoli冉冉升起,其獨家技術正是采用金屬鋰負極。時年最火的時候,意圖布局電動汽車的福特公司都想投資這家公司并采用其鋰電池作為汽車動力。之后Moli被日本的NEC和三井公司收購并制造了5萬塊手機電池,不料一年半之后這批電池大量失效,出現了嚴重質量問題。

此事造成了三大影響,一是日本公司當時決定永久放棄金屬鋰電池技術路線;二是當時給Moli公司做技術顧問的鋰電大牛杰夫·達恩也徹底放棄金屬鋰體系;三是Moli公司被賤賣給一家臺灣企業,至今只混在消費級電池領域(戴森的產品用的就是這家的電池)。

最后,金屬鋰作為負極材料的極大難度還表現在,到目前為止還都沒突破400次循環,離車規標準還差得很遠。

第二座大山是固態電解質的室溫電導率難題。

電解質的功能就是在電池充放電過程中為鋰離子在正負極之間移動搭建通道,決定鋰離子傳輸順暢與否的指標就是離子電導率,離子電導率的高低直接影響了電池的整體阻抗和倍率性能。而不幸的是,無論是哪種材質的固態電解質,離子電導率都普遍偏低,其中硫化物電解質的電導率相對較高,也只是限于和最差的聚合物電解質的對比。

聚合物電解質的導電率差到哪種地步呢?在室溫25度下,聚合物電解質的電導率要低于常規液態電解質5個數量級,到60度時,依然差著2個數量級,到120度的時候依舊有1個量級的差距。

舉個例子,假設用這樣的一塊聚合物固態電池裝在你的手機里,你能想象你的手機內部溫度高達近100度嗎?

再以法國Bollore公司為例,為了保證他們家采用聚合物固態電池的電動汽車能夠正常運行,法國人甚至還專門為每輛汽車上搭配了一個加熱元器件,每次啟動車輛之前都要將電池加熱到80度,因為只有溫度升高后,電池的導電性才能變好。

升高電池溫度這一過程不僅麻煩,而且會消耗能量,導致電池Pack的有效能量密度顯著下降,同時由于聚合物固態電池的功率性能較差,所以在實際使用時,還需要和大功率的超級電容器配合使用。

更要命的是,通常這種聚合物固態電解質的電化學穩定窗口都比較窄(一般在4V以下),對應的正極材料選擇只能是磷酸鐵鋰、鈷酸鋰或者三元NCM111,使其總體能量密度很難達到300Wh/kg。例如法國Bollore公司的聚合物電池,雖然號稱是固態電池,但其比能量卻只有100Wh/kg。

由于固態電解質電導率總體低于液態電解質,這就導致了目前固態電池的內阻過大,倍率性能整體偏低,所以固態電池暫時也就告別快充了(聚合物固態電池充滿電需要5個多小時)。業界人士表示,固態電池導電率要維持在在適當的水平,不能過高,也不能過低,“這樣的材料非常難開發”。

所以,電導率的問題成為另一大阻礙固態電池商業化應用的瓶頸之一。

第三座大山是固態電解質和正負極的界面匹配問題。

雖然固態電解質與正負極材料界面基本不存在像液態電解質分解那樣的副反應,但電解質由液態換成固體之后的弊端也是顯而易見的。鋰電池體系由電極材料-電解液的固液界面向電極材料-固態電解質的固固界面轉化過程中,就必然存在著由于固固之間無潤濕性(傳統鋰電池的電解液和正負極有很好的浸潤性,可以達到你中有我我中有你的和諧境界),“硬碰硬”的直接結果就是電解質和正負極界面相容性不佳,界面接觸電阻變大,從而嚴重影響了鋰離子在界面之間的傳輸。

電解質和正負極之間的界面相容性,直接決定了界面反應電阻和電池循環穩定性等諸多性能。試驗數據證明,目前固體電解質與正負極之間的界面接觸阻抗值是電解質本體阻抗的10倍以上,這直接導致一系列惡果:固態電池的內阻急劇增大、電池循環性能變差、循環壽命變短、倍率性能變差。

固體電解質和正負極直接的界面匹配問題,界面阻抗大是制約固態電池循環性能的最重要瓶頸之一。

第四座大山,就是固態電池及其材料的生產工藝和設備難題。

前面提到了,鋰金屬用作負極材料的制備,堪比芯片制造的難度。金屬鋰是個十足活潑的活躍分子,極容易與空氣中的氧氣和水分發生反應,并且還不耐高溫,這就給固態電池的生產組裝和實際應用中帶來極大的困難。

還有,如果要改善電解質和正負極的界面阻抗,就要通過在1000度以上的高溫下燒結電極材料來增加界面的接觸面積,這對工藝要求也比較苛刻。

在薄膜型氧化物電解質的制造中,由于傳統的涂布法無法控制粒子的粒徑與膜厚,成膜的均勻性比較低,只有真空鍍膜法才能夠較好保持電解質的均勻性。所以薄膜型固態電池產品多采用真空鍍膜、磁控濺射、脈沖激光沉積、化學氣相沉積等方法生產,對設備要求極高,制備工藝也很復雜,不利于大規模生產,導致生產效率低下,成本高昂。

例如,2015年被戴森收購的Sakti3就是生產薄膜型固態電池的,但其產品由于制備成本高以及規模化生產難度大導致成本極其高昂,有人測算如果一輛電動汽車采用Sakti3的固態電池的話,那么僅電池成本就高達9000萬美元。

然而,戴森老爺子居然說要在將來的戴森牌電動車上使用Sakti3的固態電池,也真的是……壕。

[責任編輯:陳語]

免責聲明:本文僅代表作者個人觀點,與電池網無關。其原創性以及文中陳述文字和內容未經本網證實,對本文以及其中全部或者部分內容、文字的真實性、完整性、及時性,本站不作任何保證或承諾,請讀者僅作參考,并請自行核實相關內容。涉及資本市場或上市公司內容也不構成任何投資建議,投資者據此操作,風險自擔!

凡本網注明?“來源:XXX(非電池網)”的作品,凡屬媒體采訪本網或本網協調的專家、企業家等資源的稿件,轉載目的在于傳遞行業更多的信息或觀點,并不代表本網贊同其觀點和對其真實性負責。

如因作品內容、版權和其它問題需要同本網聯系的,請在一周內進行,以便我們及時處理、刪除。電話:400-6197-660-2?郵箱:[email protected]

電池網微信
動力電池
鋰電池
固態電池